
CreEPS — Creating EPS
Version

2.00

Uwe Fabricius & Thomas Pohl

December 6, 2009

1

Contents

1 Introduction 3

2 Units 3

3 Namespace and Parameter Types 3

4 Constructing the canvas 3

5 Drawing 4

5.1 Drawing in non–path mode . 5

5.2 Drawing in path mode . 6

6 The Attributes 11

6.1 Introduction . 11

6.2 Attribute Reference . 12

6.2.1 Line Attributes . 12

6.2.2 Colors . 16

6.2.3 Fonts . 16

6.2.4 Filling Patterns . 18

7 Transformations 19

8 LATEX font output 21

9 Embedding external EPS files 23

10 Pitfalls 23

11 Contact and Download 24

12 Thanks 25

13 Acknowledgment 25

14 License (MIT license) 25

15 In a Nutshell 26

2

1 Introduction

CreEPS is a C++ class which provides an easy–to–use interface for gener-
ating vector drawings and stores them as encapsulated PostScript1 (EPS)
files.

2 Units

CreEPS expects all length units to be in millimeters (mm) except for the
font sizes which have to be specified in points as e. g. in LATEX. Angles have
to be specified in degree, can be negative and may also exceed 360 degrees.
Color or gray scale values have to lie between 0 and 1.

3 Namespace and Parameter Types

The CreEPS classes are embedded in namespace ns_creeps.

The generic data types of parameters passed to CreEPS can be configured
in header file CreEPS_Types.hpp. The default definition of types is:

typedef int CreEPS_INT;

typedef bool CreEPS_BOOL;

typedef char CreEPS_CHAR;

typedef float CreEPS_FLOAT;

typedef double CreEPS_DOUBLE;

This configuration, however, does not influence the data types used by
CreEPS internally, but are simply intended to provide an interface corre-
sponding to the data types used outside of CreEPS.

4 Constructing the canvas

As always in C++ you have to construct a CreEPS object before you can do
anything. You have the choice between three different constructors:

1. CreEPS::CreEPS(const CreEPS_CHAR* filename,

CreEPS_FLOAT x1, CreEPS_FLOAT y1,

CreEPS_FLOAT x2, CreEPS_FLOAT y2

1The name PostScript
R©

is a registered trademark of Adobe Systems Inc.

3

[, CreEPS_BOOL latexOutput

[, const char* altEPSFilename]])

2. CreEPS::CreEPS(const char* filename,

CreEPS_FLOAT width, CreEPS_FLOAT height

[, CreEPS_BOOL latexOutput

[, const char* altEPSFilename]])

3. CreEPS::CreEPS()

The first two flavors expect a file name as the first argument. If the file
already exists it will be overwritten without any warnings. The first con-
structor expects the coordinates of the lower left corner and the upper right
corner. In the second constructor you just have to specify the width and
the height of the bounding box. The lower left corner will automatically be
located at (0, 0).

Using the optional boolean latexOutput you can switch from the default
PS font output (false) to LATEX font output (true). Please refer to section
8 for more details about LATEX font output.

If you use the third constructor which does not expect any arguments you
have to call CreEPS::newFile which accepts exactly the same arguments as
the first two constructors before you can use CreEPS to draw anything.

In the case that you have finished one EPS file and want to start drawing
the next one just call CreEPS::newFile. The old file will be finalized and
the new one is ready for drawing.

Although you should never have to call the destructor ~CreEPS explicitly,
there is no problem if you do so. The destructor just adds some lines to
the file informing the PS interpreter that this is the end of the file and
closes it afterwards. CreEPS::finalize does the same as the destructor,
but you can still create a new file with the same CreEPS object by calling
CreEPS::newFile afterwards.

5 Drawing

You have to choose between two exclusive modes when drawing on the can-
vas, but you can switch from one to the other as you wish.

4

5.1 Drawing in non–path mode

In this mode every call of a drawing method is an atomic action, i. e. two
consecutive calls do not interfere in any way. Following is an overview of all
available drawing methods in this mode with a diagram showing its usage
([CAt a] stands for an optional attribute argument that will be described
in section 6):

• line (CreEPS_FLOAT x1, CreEPS_FLOAT y1,

CreEPS_FLOAT x2, CreEPS_FLOAT y2 [, CAt a])

• rectStroke (CreEPS_FLOAT x , CreEPS_FLOAT y ,

CreEPS_FLOAT width, CreEPS_FLOAT height [, CAt a])

• rectFill (CreEPS_FLOAT x , CreEPS_FLOAT y ,

CreEPS_FLOAT width, CreEPS_FLOAT height [, CAt a])

• curve (CreEPS_FLOAT x0, CreEPS_FLOAT y0,

CreEPS_FLOAT x1, CreEPS_FLOAT y1,

CreEPS_FLOAT x2, CreEPS_FLOAT y2,

CreEPS_FLOAT x3, CreEPS_FLOAT y3 [, CAt a])

• arc (CreEPS_FLOAT x , CreEPS_FLOAT y ,

CreEPS_FLOAT radius, CreEPS_FLOAT alpha,

CreEPS_FLOAT beta [, CAt a])

• circle (CreEPS_FLOAT x , CreEPS_FLOAT y ,

CreEPS_FLOAT radius [, CAt a])

• ellipse (CreEPS_FLOAT x , CreEPS_FLOAT y ,

CreEPS_FLOAT radius1, CreEPS_FLOAT radius2

[, CreEPS_FLOAT rot] [, CAt a])

• ellipseArc (CreEPS_FLOAT x , CreEPS_FLOAT y ,

CreEPS_FLOAT radius1, CreEPS_FLOAT radius2,

CreEPS_FLOAT alpha, CreEPS_FLOAT beta

[, CreEPS_FLOAT rot] [, CAt a])

• disk (CreEPS_FLOAT x , CreEPS_FLOAT y ,

CreEPS_FLOAT radius [, CAt a])

• print (CreEPS_FLOAT x , CreEPS_FLOAT y ,

[float alpha,] const char* text [, CAt a])

5

• printf ([CAt a,] CreEPS_FLOAT x , CreEPS_FLOAT y ,

[float alpha,], const char* format, ...)

line

x1,y1

x2,y2

x,y

wh

rectstroke

rectfill

x0,y0

x1,y1

x2,y2

x3,y3
curve

x,y

r

α
β

arc

r

x,y

circle

r1

r2
α

x,y

ellipse

Figure 1: Examples for non–path drawing methods

The method disk is just a filled circle. The usage of the other drawing
methods should be clear from their arguments and the illustration.

Note: Since the overall number of arguments in the printf method is not
fixed, the optional attribute argument has a special location compared to
the other methods. Both printing methods print and printf accept an
optional argument specifying the text angel after the coordinate arguments.

5.2 Drawing in path mode

All the aforementioned non–path drawing methods instantly draw something
on the canvas. In path mode however, you first create a path by calling
methods that are similar to the non–path ones. A path can consist of several
subpaths, i. e. paths that are not connected. After constructing the complete
path which by itself does not alter the canvas, you can use it in different
ways: You can stroke the path and/or fill its shape as often as you want. If
you have no more use for this particular path, you leave the path drawing

6

mode which automatically deletes the path. Then you can start constructing
a new path or use the non–path drawing methods.

You switch to the path drawing mode and start the construction of a new
path by calling one of these two methods:

• startPath()

• startPath(CreEPS_FLOAT x, CreEPS_FLOAT y)

The second method lets you specify the starting point of the new path. It is
equivalent to calling the first method and the addMove method afterwards.

Following is a list of all available path mode methods that add an element
to the current path:

• addMove (CreEPS_FLOAT x, CreEPS_FLOAT y)

• addRelativeMove(CreEPS_FLOAT dx, CreEPS_FLOAT dy)

• addLine (CreEPS_FLOAT x, CreEPS_FLOAT y)

• addRelativeLine(CreEPS_FLOAT dx, CreEPS_FLOAT dy)

• addArc (CreEPS_FLOAT x, CreEPS_FLOAT y,

CreEPS_FLOAT radius,

CreEPS_FLOAT alpha, CreEPS_FLOAT beta)

Adds an arc in counter–clockwise direction to the path.

• addArcN (CreEPS_FLOAT x, CreEPS_FLOAT y,

CreEPS_FLOAT radius,

CreEPS_FLOAT alpha, CreEPS_FLOAT beta)

Does the same as the method above but in clockwise direction.

• addCircle (CreEPS_FLOAT x, CreEPS_FLOAT y,

CreEPS_FLOAT radius)

• addEllipse (CreEPS_FLOAT x, CreEPS_FLOAT y,

CreEPS_FLOAT radius1, CreEPS_FLOAT radius2

[, CreEPS_FLOAT rot])

• addEllipseArc (CreEPS_FLOAT x, CreEPS_FLOAT y,

CreEPS_FLOAT radius1, CreEPS_FLOAT radius2,

CreEPS_FLOAT alpha, CreEPS_FLOAT beta

[, CreEPS_FLOAT rot])

7

• addEllipseArcN (CreEPS_FLOAT x, CreEPS_FLOAT y,

CreEPS_FLOAT radius1, CreEPS_FLOAT radius2,

CreEPS_FLOAT alpha, CreEPS_FLOAT beta

[, CreEPS_FLOAT rot])

• addArcT (CreEPS_FLOAT x1, CreEPS_FLOAT y1,

CreEPS_FLOAT x2, CreEPS_FLOAT y2,

CreEPS_FLOAT radius)

Appends an arc of a circle to the current path, possibly preceded by
a straight line segment. The arc is defined by the radius and two
tangent lines. The tangent lines are those drawn from the current
point (x0,y0) to (x1,y1), and from (x1,y1) to (x2,y2) (see Fig. 2).2

• addArcTLine (CreEPS_FLOAT x1, CreEPS_FLOAT y1,

CreEPS_FLOAT x2, CreEPS_FLOAT y2,

CreEPS_FLOAT radius)

Does the same as addArcT plus drawing a line from the end of the arc
to (x2,y2).

• addCurve (CreEPS_FLOAT x1, CreEPS_FLOAT y1,

CreEPS_FLOAT x2, CreEPS_FLOAT y2,

CreEPS_FLOAT x3, CreEPS_FLOAT y3)

• closeSubpath()

Adds a straight line to the current path from the current point to the
starting point of the current subpath. See Fig. 3 for illustration.

In the PS language there is the notion of the current point, which is the point
where the last path construction method stopped on the canvas. The meth-
ods addRelativeMove, addLine, addRelativeLine, addArcT, addArcTLine,
and addCurve rely on the existence of such a current point. If it has not
been not set by a preceding path construction method, the PS interpreter
(e. g. GhostScript or your printer) will complain and stop displaying the
EPS file. It is therefore necessary to set a current point using one of the
other path mode drawing methods or the startPath method with specified
coordinates.

Except for the methods addCircle and addEllipse, all path mode drawing
methods connect the current point with the path they describe by a straight
line. If there is no current point set, there won’t be a connection line.

2Taken from the PostScript Language Reference Manual, 2. Edition, Addison–Wesley

8

r

(x0,y0) (x1,y1)

(x2,y2)

addArcT

r

(x0,y0) (x1,y1)

(x2,y2)

addArcTLine

Figure 2: An example for the path drawing methods addArcT and
addArcTLine.

(a) (b) (c)

Figure 3: Difference between closed and non–closed strokes in the path
mode: closed stroke using closeSubpath (a), non–closed stroke (b), manu-
ally closed stroke using addLine (c). Manually closing a path can create a
strange artifact at the endpoints, so use closeSubpath instead.

So far, you just know how to construct a path which does not draw anything
on the canvas. In order to use the path and to draw something you can call
the method usePath at any point between the calling of startPath and
endPath:

• usePath(DrawMode mode [, CAt a])

Uses the path that you have constructed so far to draw something
on the canvas depending on the chosen draw mode. CreEPS::STROKE
draws a stroke along the path, CreEPS::FILL fills its shape completely,
and CreEPS::EOFILL fills it according to some rule that is hard to ex-
plain with words (see Fig. 4). CreEPS::CLIP and CreEPS::EOCLIP set
the current path as the clipping region for all further actions. Remove
the current clipping region by calling resetClipping().

9

• endPath()

Just ends the current path.

• endPath(DrawMode mode [, CAt a])

Does the same as a usePath call and ends the current path afterwards.

• endPath(DrawMode mode1, DrawMode mode2

[, CAt a1 [, CAt a2]])

Does exactly the same as the above endPath call, except for the fact
that you can specify two different actions. The two optional attribute
arguments refer to the first respectively the second action. The order
of the two actions does make a difference (see Fig. 4).

(a) (b) (c) (d)

Figure 4: In all four examples the path was constructed in the same fashion.
In (a) the path was first filled with CreEPS::FILL and then drawn, in (b) it
was done vice versa. For (c) and (d) the filling command was replaced with
CreEPS::EOFILL. In this drawing mode the part of the shape that would be
filled two, four, six, . . . times is not filled at all.

In Fig. 5 the usePath method is called several times for the same path with
different attributes. Have a look at the example source code for more details.

Attention: You must not use non–path drawing methods while being in
path mode (i. e. between a startPath and its consecutive endPath call)
and vice versa! CreEPS will print an error message and exit immediately
if you do so.

10

Figure 5: Some nice tricks with usePath. If you use ghostview under Linux
you might have to turn off anti–aliasing to see a nicely shaded star.

6 The Attributes

6.1 Introduction

There are various attributes a single element of a drawing created with
CreEPS can have. For example for a simple line we could specify a line
thickness and a gray scale value. This is the job of the class CAt and its
derived classes. All the derived classes have self-explanatory names and only
a constructor and a destructor. You simply call the constructor of one of
them to create a certain attribute. For example

CAtLineThickness(4);

creates a drawing attribute with the information ”line thickness = 4mm”,
or

CAtGrayScale(0.5);

creates an attribute with a gray value of 0.5. But of course a line could have
both attributes, a line thickness and a gray value. How to combine them?
The properties of more than one CAt object can be merged into one object
just by ”catenating” them with the logical OR-operator ”|”. For example

CAtLineThickness(4) | CAtGrayScale(0.5);

creates an attribute object with line thickness equal to 4 and a gray scale
value of 0.5. And now we just have to pass this object to one of the drawing
routines, because they all have an optional parameter of the type CAt& (this

11

is the optional parameter [, CAt a] that has already been introduced and
used in the previous sections. Assume that we already have created an
instance of CreEPS named creeps. Then the following command will draw
a 4mm thick line with gray value 0.5 from point (10,10) to (10,90):

creeps.line(10, 10, 10, 90, CAtLineThickness(4) |

CAtGrayScale(0.5));

The properties of an attribute object passed to a drawing routine have a local
scope and are valid only for this function. That means, if we draw a second
line after the line above without specifying attributes, the global settings
fix the appearance of the line. You can change these global settings with
CreEPS::setAttributes(CAt&). The following code creates the graphic
below.

CreEPS creeps("cre.eps", 50, 30);

creeps.line(10, 5, 10, 25);

creeps.setAttributes(CAtGrayScale(0.6) | CAtLineThickness(3));

creeps.line(20, 5, 20, 25,

CAtGrayScale(0.9) | CAtLineThickness(6));

creeps.line(30, 5, 30, 25);

creeps.line(40, 5, 40, 25, CAtGrayScale(0.3));

6.2 Attribute Reference

Here you can find a reference of the classes derived from CAt.

6.2.1 Line Attributes

CAtLineThickness(const CreEPS FLOAT thickness)

Simply the thickness of all lines drawn as straight lines and curves. thickness
specifies the thickness in millimeters.

12

CAtLineJoin(const LINEJOIN linejoin)

The line join defines the way vertices of line paths are treated. linejoin

can be one of the enumerations constants defined in CAt: MITER, LJ ROUND,

BEVEL. For their differences just have a look at the following example.

MITER

LJ_ROUND

BEVEL

CAtLineCap(const LINECAP linecap)

Here linecap is one of the constants CAt::BUTT, ::LC ROUND, ::SQUARE

and sets the appearance of the line ends.

BUTT LC_ROUND SQUARE

CAtLineDash(const CreEPS CHAR *const dashstring,

const CreEPS FLOAT offset)

First, how could we define how a line is dashed? We could define for the
whole length of a black line e.g. ”draw 2mm black, than leave 2mm empty,
than draw 1mm black, than ...”. But in a sensibly dashed line this pattern
should be repeated after a while. So for example we could define the dashed
line by ”2mm black, than 2mm space, than 1mm black, 2mm space, and
now from the beginning”. Fine, if we agree now upon always starting with
”black” and also upon using mm as units, it would be enough to say ”2 2 1

13

2”. And exactly this is the string you have to pass as parameter dashstring.
So the code line

creeps.line(5, 5, 40, 5, CAtLineDash("2 2 1 2", 0));

draws this line (The second parameter offset, here 0, will be explained
below. Please ignore it for the moment.)

But what happens, if the string contains an odd number of numbers? Then
we could imagine the creation of the line more like this: We copy the in-
struction string and glue the original and the copy together and then use
the result as described above.

creeps.line(5, 5, 40, 5, CAtLineDash("2 2 1", 0));

The second parameter offset is just an offset you start from evaluating the
dash rules. The rule ”4 3 2 1” has the length 4 + 3 + 2 + 1 = 11. And in
this total length you start with the specified offset, i.e. you cut off the first
offset millimeters.

creeps.line(5, 7, 40, 7, CAtLineDash("4 3 2 1", 0));

creeps.line(5, 3, 40, 3, CAtLineDash("4 3 2 1", 3));

In most cases there is no need for difficult line patterns. Therefore CreEPS

offers four typical base patterns defined as constants in CAt: SOLID, DOT,
DASH, DOTDASH, that you can pass to the second constructor of the class
CAtLineDash:

CAtLineDash(const LINEDASH dash,

const CreEPS FLOAT factor)

CreEPS creates the line pattern according to the line thickness so that for
example the dots in pattern DOT are dots as you would expect.

14

for(int i = 1; i < 4; i++) {

creeps.line(5, 40-10*i, 45, 40-10*i,

CAtLineDash(CAt::DOT, 0) | CAtLineThickness(2*i));

}

With the parameter factor (≥ 1) the predefined pattern can be scaled in
the following way. Let T denote the line thickness and x the parameter
factor.

DOT

DASH

DOTDASH

 T xT T xT T xT T

xT xT xT xT xT xT

 T xT/2 xT xT/2 T

The patterns DOT, DASH, DOTDASH are also adapted to the line cap.
Note that a globally set line dash (DOT, DASH, DOTDASH) is not updated,
if the line thickness or line cap are changed. This might lead to strange
effects, even that a line is not drawn at all (see example below). So setting
the line dash globally must be used carefully, if the line thickness or the line
cap change after that.

creeps.setAttributes(CAtLineThickness(1) |

CAtLineCap(CAt::LC_ROUND) |

CAtLineDash(CAt::DOT, 1));

creeps.line(5, 20, 45, 20);

creeps.line(5, 15, 45, 15, CAtLineThickness(2));

15

creeps.setAttributes(CAtLineCap(CAt::BUTT));

creeps.line(5, 10, 45, 10); // THIS LINE STAYS INVISIBLE !!

creeps.line(5, 5, 45, 5, CAtLineDash(CAt::DOT, 1));

6.2.2 Colors

CAtColor(const CreEPS_FLOAT red,

const CreEPS_FLOAT green,

const CreEPS_FLOAT blue)

Defines the RGB color curves, lines, fonts, ... are drawn with. red, green,
blue ∈ [0,1].

CAtGrayScale(const CreEPS_FLOAT grayscale)

Identical to Color(grayscale, grayscale, grayscale).

CAtBackgroundColor(const CreEPS_FLOAT red,

const CreEPS_FLOAT green,

const CreEPS_FLOAT blue)

Defines the background color used in filling patterns (→ filling patterns).

CAtTransparentBackground()

The transparent background color in filling patterns. As the default back-
ground is transparent, this attribute is only needed, if a non-transparent
background has been set before by CreEPS::setAttributes.

6.2.3 Fonts

CAtFont(const CreEPS CHAR *fontstring [, const CreEPS FLOAT scale]

)

CAtFont(const CreEPS FLOAT scale)

16

In order to select a font you have to pass a string specifying a valid font.
In addition to this you can scale the font to scale point size. So there are
three different ways to use and create Font:

CAtFont("Times-Roman", 5)

selects the font ”Times-Roman” with size 5 pts
CAtFont("Times-Roman")

selects ”Times-Roman” and uses the current global font size
CAtFont(3)

uses the current global font and scales it to 3 pts

Some possible font types are (here in size 10 pts):

Times−Roman

Times−Italic

Times−Bold
Times−BoldItalic

Helvetica
Helvetica−Oblique
Helvetica−Bold
Helvetica−BoldOblique

Courier

Courier−Oblique

Courier−Bold

Courier−BoldOblique

CAtTextAlignment(const CreEPS INT alignment)

As a printed word has a finite width and height, it does not make sense
to say ”draw the word ’CreEPS’ at point (10,10)”. Should the midpoint
of the ”C” be placed at (10,10) or the midpoint of a box bounding the
whole word? That’s why you can specify text alignment in CreEPS. In CAt

there are constants defined for the vertical (TOP, VCENTER, BASELINE,
BOTTOM) and for the horizontal (LEFT, HCENTER, RIGHT) alignment.
To define the point of a text which should lie on the coordinates specified in
CreEPS::printf one horizontal alignment constant can be combined with
one vertical constant with the binary OR operator ”|”. For the meaning of
the constants see the graphic below.

17

align
BOTTOM

BASELINE
VCENTER

TOP

LEFT HCENTER RIGHT

In addition to this there are the combined constants CENTER = (HCEN-
TER | VCENTER) and DEFAULT = (LEFT | BASELINE) (initial value).

6.2.4 Filling Patterns

There are some predefined filling patterns paths can be filled with.

CAtHexDotFilling(const CreEPS_FLOAT radius,

const CreEPS_FLOAT distance)

In a hexagonal grid dots with radius radius are placed. The mesh size of
the grid, i.e. the distance between the midpoints of neighboring dots, is
distance.

CAtCheckerboardFilling(const CreEPS_FLOAT x,

const CreEPS_FLOAT y)

Just a checkerboard with field width x and field height y.

CAtStripeFilling(const CreEPS_FLOAT width,

const CreEPS_FLOAT distance,

const CreEPS_INT angle [, CAt a])

Stripes with width width and distance distance between each other and
the slope angle angle.

18

HexDotFilling CheckerboardFilling StripeFilling

The filling pattern is drawn with the color specified with CAtColor on a
background specified with CAtBackgroundColor. The default background
is transparent. If you have set a global background, this can be changed
only by using or setting CAtTransparentBackground().

7 Transformations

In the PostScript language all graphical output is transformed in a certain
way before being drawn to the canvas. This makes it easy to scale or move
things around on the canvas without altering the actual coordinates of the
graphical elements. In a mathematical notation the given coordinates are
transformed by the so called current transformation matrix (CTM):

CTM =

a b 0
c d 0
tx ty 1

x 7−→ ax + by + tx

y 7−→ cx + dy + ty

Do not let the mathematical notation scare you off the really useful fea-
tures that transformations offer. The following five easy–to–use methods
described below do what you expect them to do even without understand-
ing the equations.

• CreEPS::applyRotation(CreEPS_FLOAT alpha)

Rotates the following output by the given angle. The pivoting point
is the current origin of the coordinate system:

CTM 7−→

cos(α) sin(α) 0
− sin(α) cos(α) 0

0 0 1

 × CTM

19

• CreEPS::applyTranslation(CreEPS_FLOAT dx, CreEPS_FLOAT dy)

Shifts the origin of the coordinate system by the given values:

CTM 7−→

1 0 0
0 1 0
dx dy 1

 × CTM

• CreEPS::applyScaling(CreEPS_FLOAT sx [, CreEPS_FLOAT sy])

Scales the following output with the given values in x and y direc-
tion separately. If you specify just one parameter the scaling will be
isotropic:

CTM 7−→

sx 0 0
0 sy 0
0 0 1

 × CTM

• CreEPS::applyTransformation(CreEPS_FLOAT m[3][2])

A generic transformation matrix can be specified which will be multi-
plied with the CTM:

CTM 7−→

m[0][0] m[0][1] 0
m[1][0] m[1][1] 0
m[2][0] m[2][1] 1

 × CTM

There is one mathematical restriction for the given transformation
matrix: It has to be invertible. Since this is the case for all practical
transformations you should not worry too much about this.

• CreEPS::resetTransformations()

Resets the CTM to the matrix that was set right at the beginning of
the current EPS file. This is not equal to setting the unity matrix,
since a surrounding PS file might change the CTM to place the EPS
file at a certain position of the page. This method takes care of that
issue and make sure that everything is placed where it should be.

• CreEPS::saveTransformation()

Stores the current CTM for later use. For example you could save the
CTM, do another transformation and after some drawing load the old
CTM again by calling . . .

• CreEPS::loadTransformation()

But be careful: Do not try to load more transformations than you have
saved before. CreEPS does some bookkeeping and informs you if you do

20

so. It might also be a good idea to make sure that you load all transfor-
mations again before closing the file. Violating this rule will most likely
do no harm, but who knows. Calling CreEPS::resetTransformations()
does not remove or alter the stored transformations.

If you use more than one transformation, e. g. a translation and a rotation,
the order does matter. Mathematically speaking, the multiplication of the
transformation matrices is not commutative.

(a) (b)

Figure 6: The path for both examples was constructed while a scaling trans-
formation was active. For (a) the transformation was reset before stroking
and filling the path, for (b) it remained active.

Transformations do not only alter the coordinates of graphical elements, but
also affect line strokes and fillings as you can see in Fig. 6. Depending on
the effect that you want to achieve it might therefore be necessary to turn
off transformations between constructing the path and using it.

8 LATEX font output

When you create a new CreEPS object you can select LATEX output as men-
tioned in section 4.

• CreEPS::CreEPS(const char* filename,

CreEPS_FLOAT x1, CreEPS_FLOAT y1,

CreEPS_FLOAT x2, CreEPS_FLOAT y2

[, CreEPS_BOOL latexOutput

[, const char* altEPSFilename]])

• CreEPS::CreEPS(const char* filename,

CreEPS_FLOAT width, CreEPS_FLOAT height

21

[, CreEPS_BOOL latexOutput

[, const char* altEPSFilename]])

You just have to specify a true boolean for latexOutput. CreEPS then
creates another file for you with the same filename as specified for filename
appended with “_t” This file will contain all the text that you printed as
a LATEX file 3. Instead of using \includegraphics{example.eps} from
the graphics package you have to include the generated LATEX file by using
\input{example.eps_t}. However, it is mandatory to load two packages
with the command \usepackage{graphics,color} in the including LATEX
file.

The name of the EPS file that will be loaded from within the generated
LATEX file is the given filename string by default. If you specify the op-
tional altEPSFilename string, this will be used instead.
Let’s think of a scenario where this feature might come in handy: Your code
that uses CreEPS lives inside the directory ~/doc/bin, but you want CreEPS
to store its generated files in ~/doc. To do so you create a CreEPS object
with CreEPS creeps("../foo.eps", 20, 10, true);.
CreEPSwill then generate two files in ~/doc, namely foo.eps and foo.eps_t.
In your LATEX source you just have to write \input{foo.eps_t}. The prob-
lem is that this LATEX file will then try to load the EPS file ../foo.eps since
this is what you specified in the constructor. To avoid this you can give an
optional alternative name for the EPS file that should be loaded from within
the generated LATEXfile. In our case the constructor call

CreEPS creeps("../foo.eps", 200, 100, true, "foo.eps");

would do the trick.

If you choose to use LATEX font output the font selection via CAtFont will
only change the size of the LATEX font but not the font style itself (Times–
Roman–Bold, Helvetica–Oblique, . . .). Of course you can use the LATEX
way of selecting the font within the printed string by the appropriate LATEX
commands4. Rotating and aligning the text works exactly the same as in
PS font output mode.

Another thing that you have to consider when using LATEX font output
are transformations: Neither translation, scaling, rotation, nor a generic
transformation will influence the position, the size or the orientation of the
LATEX text.

3Of course you can have a look at the EPS file directly, but all the text will be missing.
4Do not forget to use two backslashes for LATEX commands in your C++ strings.

22

9 Embedding external EPS files

CreEPS provides the integration of external EPS files into the CreEPS file.
To embed an external file call

CreEPS::embedEPS(const CreEPS_CHAR *const filename)

with filename being the name of the file you want to integrate. Attributes
that have been set before in the CreEPS–generated file will not influence the
drawing behavior of the imported file, except all modifications of the trans-
formation matrix. So you might use applyTranslation, applyRotation,
and applyScaling to position the embedded image.
Example:

CreEPS creeps("cre.eps", 85, 40);

creeps.applyScaling(3.0/2.0, 3.0/2.0);

creeps.embedEPS("lines.eps");

creeps.applyScaling(2.0/3.0, 2.0/3.0);

creeps.embedEPS("align.eps");

creeps.embedEPS("lines.eps");

align
BOTTOM

BASELINE
VCENTER

TOP

LEFT HCENTER RIGHT

10 Pitfalls

• Depending on the GhostScript version you use the colors of filled back-
grounds may not be the expected.

• When you use filling patterns globally GhostScript uses that filling for
line strokes as well.

Below you can find the details for a PS interpreter that we used and that
showed the test picture above with the intended colors and filling:

23

Blue background

Red dots
Striped?

Figure 7: These are some examples for the above–mentioned pitfalls. On the
left–hand side you should see a blue box with red dots and white text. On the
right–hand side you see the underlined word ”Striped?”. Depending on your
PostScript interpreter you either see a striped text, a striped underline, or
both (filled with yellow lines on magenta background). The text may appear
scrambled until you zoom in or print the document.

Product: GPL Ghostscript

Version: 3010

Revision: 861

Language level: 3

Figure 8: In this box you can read some information about the interpreter
which you are using right now to display this manual.

Product: GNU Ghostscript
Version: 3010
Revision: 651
Language level: 3

11 Contact and Download

You are looking for the latest version of CreEPS or want to contact us? Then
just visit our web pages:

• http://uwefabricius.de/

• http://thomas-pohl.info/

24

12 Thanks

Thanks to Marcus Mohr for proof reading this documentation and for being
the first real user of CreEPS. This implies that he is the one to blame if there
are any mistakes letf ;-)

13 Acknowledgment

Part of the programming for CreEPS was done while working for the Simu-
lation Group (http://www10.informatik.uni-erlangen.de/) at the Uni-
versity of Erlangen–Nuremberg (http://www.uni-erlangen.de/), Germany.

14 License (MIT license)

Copyright (c) 2002 - 2009 Uwe Fabricius, Thomas Pohl

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the ”Software”), to deal
in the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished
to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.

25

15 In a Nutshell

CreEPS Constructors

CreEPS(char* filename, CreEPS_FLOAT x1, CreEPS_FLOAT y1, CreEPS_FLOAT x2, CreEPS_FLOAT y2

[, CreEPS_BOOL latexOutput [, char* altEPSFilename]])

CreEPS(char* filename, CreEPS_FLOAT width, CreEPS_FLOAT height

[, CreEPS_BOOL latexOutput [, char* altEPSFilename]])

CreEPS() [the only allowed call in this state is newFile]
newFile(...) [accepts the same arguments as one of the first two constructors]

CreEPS Non–Path Drawing Methods

line (CreEPS_FLOAT x1, CreEPS_FLOAT y1, CreEPS_FLOAT x2, CreEPS_FLOAT y2 [, CAt a])

rectStroke(CreEPS_FLOAT x , CreEPS_FLOAT y , CreEPS_FLOAT width, CreEPS_FLOAT height [, CAt a])

rectFill (CreEPS_FLOAT x , CreEPS_FLOAT y , CreEPS_FLOAT width, CreEPS_FLOAT height [, CAt a])

curve (CreEPS_FLOAT x0, CreEPS_FLOAT y0, CreEPS_FLOAT x1, CreEPS_FLOAT y1,

CreEPS_FLOAT x2, CreEPS_FLOAT y2, CreEPS_FLOAT x3, CreEPS_FLOAT y3 [, CAt a])

arc (CreEPS_FLOAT x , CreEPS_FLOAT y , CreEPS_FLOAT radius,

CreEPS_FLOAT alpha, CreEPS_FLOAT beta [, CAt a])

circle (CreEPS_FLOAT x , CreEPS_FLOAT y , CreEPS_FLOAT radius [, CAt a])

ellipse (CreEPS_FLOAT x , CreEPS_FLOAT y , CreEPS_FLOAT radius1, CreEPS_FLOAT radius2

[, CreEPS_FLOAT rot] [, CAt a])

ellipseArc(CreEPS_FLOAT x , CreEPS_FLOAT y , CreEPS_FLOAT radius1, CreEPS_FLOAT radius2,

CreEPS_FLOAT alpha, CreEPS_FLOAT beta [, CreEPS_FLOAT rot] [, CAt a])

disk (CreEPS_FLOAT x , CreEPS_FLOAT y , CreEPS_FLOAT radius [, CAt a])

print (CreEPS_FLOAT x , CreEPS_FLOAT y , [float alpha,] char* text [, CAt a])

printf ([CAt a,] CreEPS_FLOAT x , CreEPS_FLOAT y , [float alpha,] char* format, ...)

CreEPS Path Drawing Methods

startPath()

startPath(CreEPS_FLOAT x, CreEPS_FLOAT y)

addMove (CreEPS_FLOAT x, CreEPS_FLOAT y)

addRelativeMove(CreEPS_FLOAT dx, CreEPS_FLOAT dy)

addLine (CreEPS_FLOAT x, CreEPS_FLOAT y)

addRelativeLine(CreEPS_FLOAT dx, CreEPS_FLOAT dy)

addArc (CreEPS_FLOAT x, CreEPS_FLOAT y, CreEPS_FLOAT radius,

CreEPS_FLOAT alpha, CreEPS_FLOAT beta)

addArcN (CreEPS_FLOAT x, CreEPS_FLOAT y, CreEPS_FLOAT radius,

CreEPS_FLOAT alpha, CreEPS_FLOAT beta)

addCircle (CreEPS_FLOAT x, CreEPS_FLOAT y, CreEPS_FLOAT radius)

addEllipse (CreEPS_FLOAT x, CreEPS_FLOAT y, CreEPS_FLOAT radius1, CreEPS_FLOAT radius2

[, CreEPS_FLOAT rot])

addEllipseArc (CreEPS_FLOAT x, CreEPS_FLOAT y, CreEPS_FLOAT radius1, CreEPS_FLOAT radius2,

CreEPS_FLOAT alpha, CreEPS_FLOAT beta [, CreEPS_FLOAT rot])

addEllipseArcN (CreEPS_FLOAT x, CreEPS_FLOAT y, CreEPS_FLOAT radius1, CreEPS_FLOAT radius2,

CreEPS_FLOAT alpha, CreEPS_FLOAT beta [, CreEPS_FLOAT rot])

addArcT (CreEPS_FLOAT x1, CreEPS_FLOAT y1,

CreEPS_FLOAT x2, CreEPS_FLOAT y2, CreEPS_FLOAT radius)

addArcTLine (CreEPS_FLOAT x1, CreEPS_FLOAT y1,

CreEPS_FLOAT x2, CreEPS_FLOAT y2, CreEPS_FLOAT radius)

addCurve (CreEPS_FLOAT x1, CreEPS_FLOAT y1,

CreEPS_FLOAT x2, CreEPS_FLOAT y2, CreEPS_FLOAT x3, CreEPS_FLOAT y3)

closeSubpath ()

usePath(DrawMode mode [, CAt a])

endPath()

endPath(DrawMode mode [, CAt a])

endPath(DrawMode mode1, DrawMode mode2 [, CAt a1 [, CAt a2]])

CreEPS Transformations

applyRotation (CreEPS_FLOAT alpha)

applyTranslation (CreEPS_FLOAT dx, CreEPS_FLOAT dy)

applyScaling (CreEPS_FLOAT sx [, CreEPS_FLOAT sy])

applyTransformation (CreEPS_FLOAT m[3][2])

resetTransformations()

saveTransformation()

loadTransformation()

26

CreEPS Miscellaneous functions

resetClipping()

embedEPS(char* filename)

special(char* text, ...)

CreEPS Attributes: CAt

CAtLineThickness(CreEPS_FLOAT thickness)

CAtLineJoin (LINEJOIN linejoin)

CAtLineCap (LINECAP linecap)

CAtLineDash (char* dashstring, CreEPS_FLOAT offset)

CAtLineDash (LINEDASH dash, CreEPS_FLOAT factor)

CAtColor (CreEPS_FLOAT red, CreEPS_FLOAT green, CreEPS_FLOAT blue)

CAtGrayScale (CreEPS_FLOAT grayscale)

CAtFont (CreEPS_CHAR *fontstring [, CreEPS_FLOAT scale])

CAtFont (CreEPS_FLOAT scale)

CAtTextAlignment(CreEPS_INT alignment)

CAtHexDotFilling (CreEPS_FLOAT radius, CreEPS_FLOAT distance)

CAtCheckerboardFilling (CreEPS_FLOAT x, CreEPS_FLOAT y)

CAtStripeFilling (CreEPS_FLOAT width, CreEPS_FLOAT distance, CreEPS_INT angle)

CAtBackgroundColor (CreEPS_FLOAT red, CreEPS_FLOAT green, CreEPS_FLOAT blue)

CAtTransparentBackground()

CreEPS Constants

DrawMode CreEPS::STROKE CreEPS::FILL CreEPS::EOFILL CreEPS::CLIP CreEPS::EOCLIP

CAt Constants

LINEJOIN CAt::MITER CAt::LJ_ROUND CAt::BEVEL

LINECAP CAt::BUTT CAt::LC_ROUND CAt::SQUARE

LINEDASH CAt::SOLID CAt::DOT CAt::DASH CAt::DOTDASH

Text alignment CAt::TOP CAt::VCENTER CAt::BASELINE CAt::BOTTOM

(can be combined CAt::LEFT CAt::HCENTER CAt::RIGHT

with | operator) CAt::CENTER CAt::DEFAULT

27

